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Multi-layered diffusive convection. Part 1.
Spontaneous layer formation
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Diffusive convection in an infinite two-dimensional fluid with linear vertical gradients
of temperature and salinity is studied numerically and analytically. When the density
gradient ratio exceeds a critical value above which diffusive convection grows
according to the linear stability analysis, spontaneous layer formation is found to
occur. At the first stage nearly steady oscillating motions, the horizontal scale of
which is of the order of the buoyancy boundary layer scale δ, arise. After several tens
of the oscillation cycle, a transition to the second stage occurs in which overturning
convective motions develop and well-mixed regions are formed. The convective
motions resemble Rayleigh–Bénard convection at a high Rayleigh number. The
well-mixed regions are gradually organized into horizontal layers, a typical thickness
of which is of the order of δ. A detailed analysis of the nonlinear process during
the layer formation reveals that four modes are responsible for the layer formation:
The first mode is the linear fastest-growing mode with wavenumber vector (k0, 0).
The second mode with (k0, m0) is weakly growing. The third mode with (0, m0) is
dissipating, and the fourth mode is its higher harmonic having (0, 2m0). It is shown
that a truncated spectral model with the four modes well reproduces the results of
the full numerical simulation.

1. Introduction
Step-like vertical structures of salinity and temperature are observed in many

regions of the oceans (Swallow & Crease 1965; Hoare 1966; Tait & Howe 1968; Neal,
Neshyba & Denner 1969; Neshyba, Neal & Denner 1971). In these structures, nearly
neutrally stratified layers are sandwiched by thin interfaces with sharp and stable
gradients of density and concentration. Each layer has a typical vertical dimension of
about 10 m and has horizontal coherency over several kilometres (Tait & Howe 1968).

One of the most promising candidates to produce these observed layered structures
is the double-diffusive convection. There have been a number of laboratory studies
on such layering processes, not only from the viewpoint of oceanography (Turner
1965), but also from that of geology (Huppert & Turner 1981). Most of these studies
examined the development of convective layers due to some buoyancy flux from
the boundaries: e.g. a linear gradient of salinity is heated from the bottom (Turner
1968; Huppert & Linden 1979; Fernando 1987) or linear gradients of salinity and
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temperature are sandwiched by uniformly stratified layers (Linden 1976). In both
configurations, convective layers are produced one by one from the boundaries. The
thickness of the layers decreased with the distance from the boundaries. However, the
layered structures observed in the oceans seem to have no such monotonic decrease
of layer thickness with depth. Linden (1976) speculated that multi-layered convection
may be possible even in the absence of buoyancy forcing from the boundary, if
the available potential energy stored in the temperature stratification is released.
However, this speculation has never been proved from either a numerical or a
laboratory experiment. Thus the mechanism for the formation of uniform layers is
not well understood yet.

There are a number of theoretical studies on the stability of a double-diffusive
stratification. Baines & Gill (1969) analysed the linear stability of double-diffusive
stratification with constant temperature and salinity gradients and summarized the
results in a regime diagram. Using a truncated spectral model, Veronis (1965, 1968)
and Ahlers & Lücke (1987) studied a nonlinear growth of the diffusive convection
in an initially uniform stratification. These theoretical studies considered the double-
diffusive problem as an extension of the Rayleigh–Bénard convection, so that they
used a configuration in which a layer of the fluid exists between two horizontal
parallel plates on which temperature and salinity are specified. Convective motions
are driven by the flux through the boundaries.

Linden (1976), on the other hand, speculated that disturbances may be able to
develop within a diffusively stratified fluid, even in the absence of boundary fluxes.
He anticipated that the disturbances can grow at the expense of the available
potential energy stored in the ‘top-heavy’ temperature stratification. However, this
idea has never been pursued until now. Our objectives are to investigate the
condition for the growth of small disturbances, their evolution processes and the final
state.

The present paper consists of two parts. In Part 1 we investigate the characteristics
of the diffusive convection and its nonlinear evolution using a direct numerical
simulation (DNS) and an analytical model. In Part 2 (Noguchi & Niino 2010) we
analyse more in detail the growth of layers found in the DNS of Part 1 and construct
a simple mechanistic model of the layer growth.

Part 1 is organized as follows. In § 2, we formulate the equations of motion in an
infinite diffusive stratification. We analyse its linear stability in § 3. In § 4, we outline
the numerical model and present the results of numerical simulation in § 5. The
results are analysed in terms of nonlinear interaction among several wave modes in
§ 6. Based on the analysis, we propose a truncated spectral model in § 7. We interpret
and discuss the results in § 8. Finally the main findings are summarized in § 9.

2. Formulation of the problem
Consider a fluid stratified with two components T and S, where T denotes the faster

diffusing component and S denotes the slower diffusing component. In what follows,
we consider a diffusive stratification in which T is stratified unstably (dρT /dz > 0),
S is stratified stably (dρS/dz < 0) and the total density ρ is also stratified stably
(dρ/dz < 0), where ρT and ρS denote contributions of T and S to the total density
and the overbar denotes a basic density field (figure 1). In the oceans, −T and S

correspond to heat and salt, respectively, and diffusive stratifications tend to be found
in high latitudes.
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Figure 1. Basic stratification.

We will use the Boussinesq approximation. The density is assumed to be a linear
function of temperature and salinity:

ρ = ρ0[1 + α(T − T0) + β(S − S0)], (2.1)

where α and β are the coefficients of expansion for T and S, respectively, and ρ0, T0

and S0 are the reference values for density, T and S, respectively.
In this paper, we will consider only two-dimensional (x, z) motions for simplicity.

The governing equations in dimensional form are given as follows:
Equations of motion

Du∗

Dt∗
= −∂p∗

∂x∗
+ ν∇2

∗u∗, (2.2)

Dw∗

Dt∗
= −∂p∗

∂z∗
− g(αT∗ + βS∗) + ν∇2

∗w∗, (2.3)

conservation of the faster diffusing component,

DT∗

Dt∗
= κT ∇2

∗T∗, (2.4)

conservation of the slower diffusing component,

DS∗

Dt∗
= κS∇2

∗S∗, (2.5)

and continuity equation

∂u∗

∂x∗
+

∂w∗

∂z∗
= 0, (2.6)

where κT and κS(<κT ) are the diffusivities of the faster and the slower diffusing
components, respectively, ν is the kinematic viscosity and g is the gravity acceleration.
Variables with asterisks are dimensional.

In what follows, we consider a diffusively stratified fluid with an infinite extent. Let
the initial stratification be given by

T∗ = T0∗ + Tz∗ z∗, S∗ = S0∗ + Sz∗ z∗, (2.7)

where T0∗ and S0∗ are constants. The fluid is initially motionless and horizontally
homogeneous.

Although there is no external length scale, the present configuration has an internal
length scale based on diffusivity of the faster diffusing component, kinematic viscosity,
gravity acceleration and vertical density stratification due to the gradient of the faster
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diffusing component:

δ ≡
∣∣∣∣gαTz

κT ν

∣∣∣∣−1/4

. (2.8)

This length scale is equivalent to the horizontal thickness of the wall boundary layer
in the heat-up problem of a stable stratification from a sidewall (Prandtl 1952) and
is sometimes called a ‘buoyancy layer thickness’. It is also identical to the scale
introduced by Stern (1969) for the salt-finger problem. The length scale δ also gives a
layer thickness for which a Rayleigh number based on the temperature difference is
equal to unity in the linear temperature stratification.

Let us now non-dimensionalize the governing equations by scaling length by δ, time
by δ2/κT and the velocity by κT /δ. The faster and the slower diffusing components are
scaled by their concentration difference over the vertical distance of δ. The resulting
vorticity equations derived from (2.2)–(2.6) are:(

∂

∂t
− Pr∇2

)
∇2ψ = −J (ψ, ∇2ψ) − Pr

(
∂T

∂x
− 1

γ

∂S

∂x

)
, (2.9)(

∂

∂t
− ∇2

)
T = −J (ψ, T ) − ∂ψ

∂x
, (2.10)(

∂

∂t
− τ∇2

)
S = −J (ψ, S) − ∂ψ

∂x
, (2.11)

where J (a, b) is the Jacobian operator

J (a, b) ≡ ∂a

∂x

∂b

∂z
− ∂a

∂z

∂b

∂x
,

and ψ is the streamfunction, u = −∂ψ/∂z, w = ∂ψ/∂x .
Equations (2.9)–(2.11) show that the present problem is governed by three non-

dimensional parameters, Prandtl number, Pr = ν/κT , diffusivity ratio, τ = κS/κT and
density gradient ratio, γ =αTz/βSz. Once we have chosen solute components for T

and S and solvent, Pr and τ are determined. Thus, γ is the only parameter we can
vary. In the present paper, we consider a heat-salt system so that Pr = 7 and τ =0.01.

3. Linear stability analysis
Based on (2.9)–(2.11), we first examine the response of the fluid to infinitesimal

disturbances superposed on the initially motionless fluid.
Let us consider an infinitesimal disturbance in the form of a plane wave whose

wavenumber vector is k = (k, m), where k and m are horizontal and vertical
wavenumbers, respectively. Any variable, say η, is assumed to be expressed as

η = η̃ ei(kx+mz)eσ t ,

where η̃ is a constant amplitude and σ ≡ σr + iσi is a complex growth rate. Dropping
the second-order terms with respect to the disturbance, and assuming that a non-
trivial solution exists, we obtain the dispersion relation, which is a cubic equation
of σ :

[σ + (k2 + m2)][σ + Pr(k2 + m2)][σ + τ (k2 + m2)]

(
1 +

m2

k2

)
− Pr[(σ + τ (k2 + m2)) − γ −1(σ + (k2 + m2))] = 0. (3.1)
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Figure 2. Growth rate (the largest real part of σ ) in the γ –k plane, for heat-salt system. The
thick curve denotes neutral curve. Only contours of positive values are shown.

For a given combination of the horizontal and vertical wavenumbers (k, m), the
growth rate σ can be calculated from (3.1). Since the equation generally has three
roots, we choose the root which has the largest real part among the three as the
growth rate for the disturbance with wavenumbers (k, m).

It is found that growth rate has a maximum at m = 0 for all γ . Figure 2 shows the
dependency of the growth rate on k. It is seen that the uniformly stratified basic state
is linearly unstable when γ is greater than a critical value γcr of 0.876. It is interesting
to note that this critical value for the infinite layer is same as that for a layer between
horizontal free-slip boundaries in the limit of infinite thermal and solutal Rayleigh
numbers (Baines & Gill 1969, (2.13)). When γ exceeds γcr , the instability occurs at
zero vertical wavenumber, although its growth rate is infinitesimal. When we increase
γ further, the fastest growing wavenumber becomes finite and increases as γ .

The growth rate at slightly supercritical stratification, say γ = 0.88, is shown as a
function of (k, m) in figure 3. All modes inside the outermost semicircle have positive
growth rates. Note that all the growing modes have growth rates with non-zero
imaginary part. Thus, the disturbance grows with oscillation. The figure also shows
that the fastest growing mode (FGM) is at (k, m) = (0.187, 0), and has a growth rate
of 2.7 × 10−3 and frequency of 0.98. In the physical space, this mode takes the form
of infinitely long vertical columns, whose horizontal width is about 33 δ. The vertical
velocity inside the columns repeats oscillations while increasing its amplitude at a
very slow rate compared to the oscillation frequency.

4. Numerical simulation
The linear stability analysis in the previous section describes well the initial growth

of the disturbances of small amplitude. When the amplitude becomes large, however,
the linear analysis is unable to predict the evolution of the disturbances including the
dominant wavenumber. In order to study the nonlinear evolution of the disturbances,
we have to rely on a nonlinear numerical experiment. In the rest of this section,
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Figure 3. Complex growth rate in the k–m plane. The solid line shows the growth rate (real
part), and the dashed line shows the frequency (imaginary part). Note that the value of the
real part is multiplied by 103. The cross mark on the k-axis denotes the fastest growing mode
(FGM).

we will focus on a diffusive stratification of heat-salt system with γ = 0.88, which is
weakly unstable with respect to diffusive convection according to the linear theory.

In the numerical experiment, the governing equations (2.9)–(2.11) are cast into a
finite-difference form. The time evolution of variables are calculated by ‘leap-frog’
scheme except for the viscosity and diffusion terms for which the Euler forward
difference scheme is used. Heun scheme is used as a numerical filter at every 20
steps. Variables are configured on a square staggered grid system: i.e. vorticity and
streamfunction are placed at the vertex, while T and S are placed at the centre. The
third-order upstream scheme (Roache 1972) is used for the advection terms, since
it is suitable for handling very sharp internal interfaces. Although the scheme is
known to have spurious numerical diffusion, it turns out that the model succeeded to
make quite a realistic prediction of the flow characteristics as will be seen below. No
artificial parameterization of turbulent mixing were used. Only the molecular viscosity
and molecular diffusivities were considered. The Poisson equation which calculates
streamfunction from vorticity is solved by the Fourier transform method.

The calculation is made on a square domain of 632δ × 632δ in the x–z plane. This
size is about 20 times larger than the wavelength of the FGM predicted by the linear
stability theory. Grid points of 256 × 256 are used for the calculation, so that the grid
interval is sufficiently small to resolve the FGM.

Periodic boundary conditions are imposed on all physical variables at the horizontal
and vertical boundaries. For temperature and salinity, which have basic linear
gradients in the vertical direction, only their deviations from the basic states are
explicitly predicted while imposing periodic boundary conditions on the deviations
(figure 4).

A small white noise with random phase is imposed as the initial temperature
disturbances. Thus every mode has same amplitude over the whole wavenumber
space, initially. The amplitude of the initial disturbances is about 10−4 times the
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Figure 4. Schematic of boundary conditions for ρ, T and S. Only the perturbation field, which
is obtained from original stratification by subtraction of the constant basic stratification, is
assumed to be cyclic.
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Figure 5. Time evolution of kinetic energy (EK ) per unit volume, averaged over the whole
calculation domain, for γ = 0.88. The slope of the straight line gives the growth rate of the
FGM predicted by the linear stability analysis.

temperature difference between the top and bottom of the calculation domain. The
time step for the integration is �t = 5 × 10−3, and the calculation is continued until
t = 4000.

5. Numerical results
5.1. Overview

Figure 5 shows the time evolution of the kinetic energy density averaged over the
whole calculation domain. After a brief period of total energy decrease, which is
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Figure 6. Time evolutions of kinetic energy averaged over the whole calculation domain, for
supercritical and subcritical values of γ =0.88 (solid) and γ = 0.87 (dashed), respectively.

presumably due to damping of a class of disturbances with negative growth rates,
the initial random perturbations first start to grow exponentially with time, at a
rate comparable to that of the FGM predicted by the linear theory (100 � t � 900).
Following this exponential growth phase, a sudden explosive growth of kinetic energy
density takes place around t ≈ 1000.

After the kinetic energy per unit volume exceeds O(1) at around t ≈ 1100, the
growth rate slows down. The kinetic energy exhibits much larger fluctuations than
before. In this stage, the growth is no longer exponential.

For the convenience of the following analysis, the time evolution of the disturbance
will be divided into three stages, which will be called exponential growth stage, explo-
sive growth stage and non-exponential growth stage, respectively, as shown in figure 5.

5.2. Exponential growth stage

5.2.1. Linear growth rate

A preliminary experiment has been made with two different density ratios: one
is supercritical (γ = 0.88) and the other is subcritical (γ = 0.87). Figure 6 shows
the time evolutions of kinetic energy for these two experiments. For γ =0.87 the
energy decreases monotonically with time, while for γ =0.88 it first decreases slightly
because of damping of modes with negative growth rates, but soon increases with
time exponentially. These results are consistent with the prediction of the linear theory
and support the accuracy of the present numerical model.

5.2.2. Growth in wavenumber space

Figure 7 shows the time evolution of the amplitude of temperature perturbation
in the (k–m) wavenumber space. During the initial period (t � 200), the amplitude of
each mode on the wavenumber space evolves in a way very similar to that predicted
by linear theory (figure 7a, b; cf. figure 3). Modes of large horizontal and vertical
wavenumbers decay rapidly, while those inside the semicircle of the neutral curve
retain their amplitudes. The mode with the largest amplitude is the FGM predicted
by the linear theory for t � 200.

As time further elapses, however, the modes along the m-axis start to grow
(figure 7c, d ), which contradicts the linear theory. All of the modes with m = 0
have negative growth rate. By t ≈ 700, the FGM ceases to be dominant and a mode
whose wavenumber is about (k, m) = (0.19, 0.09) starts to have the largest amplitude
(figure 7c). Note that this new dominant mode has the same horizontal wavenumber
as the FGM. The modes along the m-axis are still growing at this time.
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Figure 7. Amplitude of Fourier modes of the temperature perturbation in the wavenumber-
plane, at four different times: (a) t = 50 (soon after the initiation), (b) t =200, (c) t = 700 and
(d ) t = 900. The contours are normalized by the largest amplitude at each time.
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Figure 8. Time evolution of vertical density distribution. The density is averaged in
horizontal direction, and is displayed every 50 non-dimensional time units.

The new dominant mode continues to grow by t ≈ 900 (figure 7d ). At the same
time, the amplitude that is maximum along the m-axis shifts to larger m.

These complex behaviours are not explained by the linear theory and certainly
reflect nonlinear interactions among various modes of the diffusive convection.

5.3. Explosive growth stage

At the explosive growth stage, many aspects of the flow change drastically. The kinetic
energy increases by 3 orders of magnitude. The most striking event in the explosive
growth stage is a sudden formation of layered structures in the density field. This is
rather unexpected since the vertical density profile changes very little from basic state
throughout the linear growth stage, and the linear theory predicts growth of vertically
uniform columnar convection.

Figure 8 shows the time evolution of the horizontally averaged non-dimensional
density ρ as a function of height. The vertical profile of ρ remains almost linear
until t ≈ 900. After t ≈ 900, however, it starts to show small modulations. Those
modulations rapidly develop into remarkable step-like structures. When the step-like
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Figure 9. Snapshots of net density distribution at four different times before the discrete
layers are formed: (a) t =800, (b) t = 950, (c) t = 980 and (d ) t =1010. Only (1/3) × (1/3) of
the entire calculation domain is displayed.

structures are first formed at t ≈ 1000, the thickness of the steps is about 35 in non-
dimensional length, which is close to the horizontal wavelength of the FGM. The
fact that the thickness of the steps is considerably uniform in the vertical direction
appears to imply an existence of some kind of mutual adjusting mechanism.

Figure 9 shows snapshots of density field at four different times. At t = 800, the
deformation of the density stratification is very small and only random modulations
of isopycnals (isolines of density) are visible, indicating that the fluid motions are
of small amplitude. By t = 950, however, inhomogeneity in the density stratification
becomes evident (figure 9b). Alternating layers of denser and sparser isopycnals
emerge, although the amplitude of modulation of each isopycnal still remains small.

The inhomogeneity in the vertical stratification is slowly enhanced and at the
same time wavy disturbances in each layer become visible by t = 980 (figure 9c). The
horizontal wavelength of the disturbances is about 33, which is identical to that of
the linear FGM.

The amplitude of the wavy disturbances grows further and eventually results in
overturning (figure 9d ). Strong mixing is initiated instantly and nearly homogeneous
layers separated by strongly stratified interfaces are formed. During the processes
from figure 9(b) to 9(d ), the regions with dense and sparse isopycnals do not
show any migrations in the vertical direction and their vertical intervals remain
same.

5.4. Non-exponential growth stage

As time elapses further, these steps gradually increase their thickness through mergers
with adjacent steps. The vertical profile seen after t =1000 (figure 8) resembles
very much that observed in the polar oceans (Neal et al. 1969). After the initial
layers are established at t ≈ 1200, the layers evolve in a self-similar manner. Each
homogeneous layer is sandwiched by sharp interfaces and its thickness increases with
time by merging with its adjacent layers, with their shape unchanged. Though it
is not shown in figure 8, the layers continue to grow with time continuously after
t ≈ 2500 and eventually a single layer fills the whole depth of the calculation domain.
It is likely that such layer mergings would continue if the calculation domain is
expanded.

Figure 10 shows a snapshot of the density stratification together with the streamlines
at t = 1500. There are eight layers of nearly homogeneous density sandwiched by thin
interfaces with sharp and very stable density gradients. The thickness of the interfaces
is only about 10 in non-dimensional length scale and the vertical density gradient
at the interface is about 20 times of that of the basic stratification. The interface is
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Figure 10. Vertical density gradient (shade) and streamlines (contours) at t =1500.

neither flat nor uniform in the horizontal direction and the vertical density gradient
at the interface shows large horizontal variations.

Each layer of nearly homogeneous density contains active convective cells, whose
aspect ratio is approximately unity. These convective motions contribute to mix the
density thus maintaining the homogeneous layer. The convective motions are driven
by the density flux of the fastest diffusing component through the interface. Sharp
interfaces tend to transport more T than S, because of the difference in the molecular
diffusivity, and result in unstable stratifications right above and below the interfaces.
The convective motions in each layer resemble Rayleigh–Bénard convection cells at
a high Rayleigh number. Convective mixed layers sandwiched by diffusive interfaces
are characteristic of the diffusive convection.

It is of great interest to understand how the layer structure is formed and how the
layers merge to grow in size. In the following section, the mechanism of the layer
formation is examined in detail. The mechanism for the growth of layers will be
investigated in Part 2 (Noguchi & Niino 2010).

6. Theoretical analysis on the layer formation mechanism
6.1. Spectral equations

The results of the numerical simulation suggest that some kind of nonlinear
interactions are necessary to generate the layers. The linear theory predicts that
the FGM has zero vertical wavenumber. After t ≈ 900, however, rapid formation
of layers, which corresponds to zero horizontal wavenumber and finite vertical
wavenumber, occurs. The purpose of this section is to clarify the mechanism for
the layer formation through nonlinear interactions using a truncated spectral model.
As for the choice of modes, our approach here is semi-empirical. First, we analyse
the nonlinear interactions in the DNS to find a set of modes that play principal roles.
Next, we construct a highly truncated spectral model and reproduce the observed
layer formation in the DNS.
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To analyse the results of the DNS, the governing equations (2.9)–(2.11) are Fourier-
transformed with respect to the spatial variables x and z:(

d

dt
+ PrK2

0

)
K2

0 ψ̃(k0, m0, t) =
∑

k1+k2=k0

(k1m2 − k2m1)K
2
2 ψ̃(k1, m1, t) ψ̃(k2, m2, t)

+ ik0Pr

[
T̃ (k0, m0, t) − S̃(k0, m0, t)

γ

]
, (6.1)(

d

dt
+ K2

0

)
T̃ (k0, m0, t) =

∑
k1+k2=k0

(k1m2 − k2m1) ψ̃(k1, m1, t) T̃ (k2, m2, t)

− ik0ψ̃(k0, m0, t), (6.2)(
d

dt
+ τK2

0

)
S̃(k0, m0, t) =

∑
k1+k2=k0

(k1m2 − k2m1) ψ̃(k1, m1, t) S̃(k2, m2, t)

− ik0ψ̃(k0, m0, t), (6.3)

where tilde denotes an amplitude of a Fourier-transformed variable, ki ≡ (ki, mi) and
K2

i ≡ k2
i + m2

i . The effects of the nonlinear interactions are expressed by the first
terms on the right-hand side of (6.1)–(6.3). Note that, if these terms are neglected,
the equations reduce to those used by the linear theory to derive the dispersion
relation (3.1).

The nonlinear interaction terms consist of products of two different modes, (k1, m1)
and (k2, m2). To generate the mode (k0, m0) through nonlinear interactions, the
modes (k1, m1) and (k2, m2) must satisfy the relations k0 = k1 + k2 and m0 =m1 + m2

simultaneously. Since the nonlinear terms contribute to exchanging energy among
modes, they will be henceforth called as energy transfer functions. The energy transfer
function for mode (k0, m0) will be denoted as

NX̃(k0, m0; k1, m1) =
∑
k1

[(k0 − k1)m1 − k1(m0 − m1)]ψ̃(k0 − k1, m0 − m1)X̃(k1, m1),

where X̃ can be ψ̃ , T̃ or S̃. Note that k2 = k0 − k1 and m2 = m0 − m1 are automatically
determined once (k0, m0) and (k1, m1) are given.

6.2. Spectral analysis of the simulation results

In order to identify the nonlinear interactions that lead to the layer formation, we
will examine the energy transfer function just before the explosive growth stage.

Since there are infinite points on the k–m plane, we start from looking at the point
(k0, m0) corresponding to the FGM in the linear theory, where k0 = 0.19 and m0 = 0.
Then we sweep the interacting counterpart (k1, m1) over the k–m plane and plot the
magnitude of energy transfer function NT̃ (k0, m0; k1, m1), averaged over 650 < t < 750,
based on the results of the numerical simulation. The resulting energy transfer function
is shown in figure 11(a). In the following, the modes corresponding to (0.19,0), (0.19,
0.09) and (0, 0.09) will be called modes A, B and C, respectively. The first quadrant
of figure 11(a) (k1 > 0, m1 > 0) shows that the FGM (mode A) has strong interactions
with mode B and mode C. There is another pair of modes, which interacts with
mode A, in the fourth quadrant of figure 11(a). This is simply showing the symmetric
property of NT̃ (k0, m0; k1, m1) with respect to m1 and the processes associated with
these modes are essentially identical to those in the upper half-plane. From now on,
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Figure 11. The magnitude of nonlinear interaction terms (energy transfer functions)
N
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(k0,m0; k1,m1) for modes (a) A, (b) B, (c) C and (d ) D. The white cross mark in each panel

denotes the corresponding mode (k0,m0). The absolute value is plotted on k1–m1 plane. Values
are averaged over 650< t < 750. Gray scales are in arbitrary unit for each panel.

no discrimination between mirror-image modes (±k, ±m) will be made when we refer
to the types of the modes, i.e. the mode with (0.09, ±0.19) will be called mode B and
that with (0, ±0.19) will be called mode C.

It is curious to examine how modes B and C are produced. First, let us examine
the energy transfer function for mode B (figure 11b). It is seen that mode B interacts
strongly with mode A and weakly with mode C. A band of modes on m-axis also
appears to interact with mode B. Note that the mode (0, 0.18), which is at the high
wavenumber end of this band, corresponds to the vertical interval of the layered
structure to emerge (see figure 8). This mode will henceforth be called mode D.

A similar examination of mode C shows that it strongly interacts with modes
A and B (figure 11c). Thus it seems that modes A, B and C could constitute a
closed triad. However, this closed triad alone does not explain the generation of
mode D. Figure 11(d ) shows that mode D interacts only with mode B. The vertical
wavenumber of mode D is twice as large as that of mode B. It is important to note
that the mode D cannot interact with its spatial subharmonic mode C, because the
nonlinear transfer function for modes with k =0 vanishes.

The above analysis suggests that the nonlinear interactions among the four modes
A, B, C and D are essential for the formation of the layered structure. In the following
subsection, it will be demonstrated that this is in fact the case.
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Figure 12. Configuration of the four-mode model. Encircled by broken line are the
independent four modes and others are their mirror-image modes. Arrows denote the
interactions between the four modes.

7. Four-mode model
In this section we will consider a simple truncated nonlinear spectral model in which

only the four modes identified in the analysis in the previous section are considered.
The relationship among the selected four modes are summarized in figure 12. The
modes that can directly interact with each other are connected by arrows. Note that
interactions only in the first quadrant are shown for simplicity, but there are similar
interactions in each quadrant as guessed from a consideration of symmetricity.

The construction of the present model are summarized as follows:
(a) Only the four modes (and their mirror-image modes) are considered.
(b) The principal mode A is the FGM of the linear stability theory.
(c) Mode B has the same horizontal wavenumber as A.
(d) Vertical wavenumbers of modes B and C are the same, and are taken to be

0.09, based on the analysis of the DNS (§ 6.2).
(e) Modes A, B and C constitute an interaction triad.
(f) Mode D, which has a vertical wavenumber twice as large as that of mode C,

interacts only with mode B.
According to the linear theory (figure 3), modes A and B have positive growth rates,
while modes C and D have negative growth rates. The growth rate of mode B is
about a half of that of mode A. Note that modes C and D are non-oscillatory.

Now we consider only the above four-mode set into (6.1)–(6.3) and integrate with
respect to time. The initial amplitude of the modes are taken to be |A| =10−1,
|B| =10−3 and |C| = |D| =0, by considering the amplitude of modes in the DNS at
t = 50 (figure 7a).

Figure 13 shows the time evolution of the magnitude of the streamfunctions in the
truncated model. Modes A and B grow exponentially nearly at the growth rates pre-
dicted by the linear theory until t ≈ 1300, whereas modes C and D, which are decaying
modes according to the linear theory and do not exist at the initial time, are excited
through nonlinear interactions with modes A and B and grow faster than both A and
B. This rapid growth can be explained as follows. The nonlinear production of mode
C from modes A and B is expected to be O(|A| |B|). If |A| and |B| grow as exp(σAt)
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Figure 13. Time evolution of the amplitude of the streamline perturbation for modes A–D.
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Figure 14. Time evolution of the amplitude of the temperature perturbation for modes A–D.

and exp(σBt), where σA and σB are the growth rates of modes A and B, respectively,
the amplitude of C would grow as exp[(σA +σB)t], which is faster than both A and B.

After t ≈ 1300, modes B, C and D start to grow even faster than before, and by
t ≈ 1700, all the four modes have nearly the same amplitude of O(101). Finally at
t ≈ 1750, mode D, which has been of the smallest amplitude, overtakes the rest of
the three modes. Figure 14 shows the time evolution of the amplitude of temperature
perturbations. The growth of temperature amplitude of mode D is even more dramatic
than that of the streamfunction.
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Figure 15. Time evolution of temperature perturbation of the four modes in the DNS.

Figure 15 shows the evolution of the four modes simulated by the DNS for
comparison. The amplitude of the temperature perturbations for modes A and B grow
nearly exponentially, with little fluctuations until t ≈ 650. After this time, the growth of
mode A slows down and mode B starts to show faster growth than before. By t ≈ 750,
mode B becomes dominant over mode A. Modes C and D have small amplitudes of
O(10−2) until t ≈ 300, but then they start to grow at a rate somewhat larger than that of
modes A and B. About t ≈ 750, when the amplitudes of mode B overtakes the mode A,
mode C starts to show a decrease until t ≈ 860. On the other hand, mode D continues
to grow and overtakes mode A at t ≈ 850 and then mode B at t ≈ 930. After t ≈ 930,
mode D becomes the dominant mode. It is also noteworthy that the amplitudes of
modes A, B and C show remarkable increases just before t =1000 (cf. figure 5).

The above comparison shows that the behaviour of the modes reproduced in the
four-mode model (figures 13 and 14) is reasonably similar to that found in the DNS
(figure 15). At the initial stage, modes A and B show exponential growths, drawing
energy from the basic stratification as predicted from the linear stability theory. On
the other hand, modes C and D, which are decaying modes according to the linear
theory, are produced from modes A and B through nonlinear interactions until their
amplitudes attain O(1) and catch up with those of modes A and B. Although the time
required for the layer structures to develop appears to be slightly different between
the four-mode model and the DNS, this timing is considered to depend on the initial
amplitudes of the four modes.

The behaviour of the fully nonlinear system, after mode D obtains an amplitude
of O(1) (i.e. after the layer is formed), is beyond the scope of the four-mode model.
However, it is also noted that the results of the DNS (figure 15) show that, after
obtaining the largest amplitude among all the modes (t � 1000), mode D grows further
while the other modes eventually saturate at almost a constant amplitude of O(102).

8. Discussion
8.1. Physical interpretation of the results of the four-mode model

The nonlinear interactions illustrated by the four-mode model can be physically
interpreted as follows. First, mode A as well as mode B grows due to the linear
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Figure 16. Sketches of the deformation of the basic density stratification due to the four
modes. Arrows show motions accompanied with modes A and B. For superscripts + and −,
see figure 12.

instability mechanism. As modes A and B develop, mode C is generated through the
nonlinear interaction between modes A and B, while mode D is generated through that
between mode B and its mirror-image mode. Figure 16 illustrates schematically the
deformations of the basic stratification by modes A, B, C and D. The deformations
due to modes C and D take the form of alternating layers of dense and sparse
isopycnals except that the vertical length scale of layers for mode C is two times as
large as that for mode D. Until modes C and D obtain O(1) amplitude, modes A and
B continue exponential growth to feed modes C and D through nonlinear production.

When the amplitude of mode D reaches O(1), the vertical diffusion starts to
enhance mode D itself in the following way (see figure 17). The deformations of
the density stratification for modes C and D are horizontally homogeneous and
thus can be considered as one-dimensional stratification. Let us assume that the
initial deformations of the vertical profiles for T and S are similar and the density
stratification is stable at any height. In a double-diffusive system, as time elapses, the
vertical diffusion relaxes the deformation of T faster than that of S. This results in an
enhancement of deformation of density stratification. Therefore, the vertical motion
of mode B, whose antinode is at the level of weakest stratification in mode D, becomes
enhanced and the amplitude of mode B increases. Conversely, this amplification of
mode B also contributes to increase the amplitude of mode D, through the mode
B–mode B interaction. It should be noted that the self-enhancing mechanism due
to vertical differential diffusion is decoupled with fluid motions and is only effective
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Figure 17. The self-enhancement mechanism of layer modes C and D due to vertical
differential diffusion.

when the amplitude of the modulation of stratification is of the order of unity. Thus
the mechanism is essentially a nonlinear process and beyond the scope of the linear
stability analysis.

It is worth noting that the self-enhancing mechanism also applies to linearly stable
(γ <γcr ) stratification, if vertical modulation in stratification is given externally. This
possibility will be explored in a separate paper.

8.2. Vertical scale of the layer

In the present four-mode model, we have used an empirical value 0.09 as the vertical
wavenumber mB of mode B on the basis of the analysis of the DNS. The wavenumber
mD of the resulting layer is given by mD =2mB . It may be difficult to give an
explanation for why this empirical value of mB is preferred. In what follows, however,
we will try to answer this question at least partially.

In order to examine how the value of mB affects the layer formation, additional
calculations have been made for the four-mode model with different values of mB

and mD = 2mB . In these calculations, the horizontal wavenumber of modes A and B,
kA and kB , respectively, were taken as the same value as those in the previous section
and mB was varied. The results of the calculations are shown in figure 18, where the
times required for the amplitude of mode B, C and D to overtake that of mode A
is plotted as functions of mD =2mB . It turns out that the four-wave model predicts
growth of all modes for any value of mD between 0.04 and 0.4. However, mode D
as well as modes B and C seems to grow fastest when mD is between 0.14 and 0.18,
which is consistent with the range of mD realized in the DNS.

In the DNS in which white noises are used as initial disturbances, the layer
thicknesses are not strictly constant and show some variability for runs. For such a
nonlinear system, it is very likely that the flow evolution would depend strongly on
the initial condition, so that the exact value of the wavenumber of mode B may vary
from experiment to experiment.
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Figure 18. Time for mode A to be overtaken by modes B (circle), C (triangle) and D (square),
as the function of mD . The arrow on the vertical axis indicates the range of mD that are
frequently observed in the DNS initiated from random noise.

8.3. Unimportance of resonant interactions

Although a classical resonant mechanism such as a parametric subharmonic instability
often plays an important role in nonlinear interactions (McComas & Bretherton 1977),
the present four-mode mechanism does not satisfy the resonant interaction condition:
the matching condition with respect to the frequencies is not required as seen in
(6.1)–(6.3). In that sense, we can judge that the resonant interaction is unrelated to
the present layer formation mechanism. However, near the m-axis, some modes that
satisfy the resonant condition (figure 19) are indeed excited as is seen in figures 7(b)
and 7(c). Thus, it may be possible that some kind of resonant interactions occur
before the explosive growth stage. Such interactions, however, do not seem to be
important during the layer formation as shown in figure 7(d ).

There are several reasons that exclude resonant interactions in the present problem.
Firstly, mode D (and also mode C) corresponding to the layer structure is not
oscillatory according to the linear theory. Since the resonant interactions require that
the matching condition is satisfied among three modes not only for wavenumber
vectors (k1 + k2 = k0) but also for frequencies (ω1 + ω2 =ω3), non-oscillatory modes
cannot interact with the FGM to draw energy (see figure 19). Secondly, mode D as
well as mode C deforms the vertical stratification. This shifts the oscillation period
of mode B longer, since the antinode of mode B is located where the vertical density
gradient is weakened by mode D. This would disturb the temporal resonant condition
between modes B and D. Thirdly, the subharmonic of the FGM is a decaying
mode according to the linear stability analysis. A subharmonic resonance requires the
subharmonic wave to be at least linearly neutral. Otherwise, the subharmonic wave
would decay out before it becomes large enough to interact with the principal wave.

8.4. Role of mode D

It is of interest to understand why the nonlinear interactions do not close among the
triad of modes A, B and C, but require an addition of mode D. If mode D were not
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draw energy from the FGM through parametric subharmonic resonance.

included, mode C would be the only mode that contributes to the layer formation.
There are at least two reasons to believe that mode C would be less effective than
mode D to grow. Firstly, a deformation of the density stratification due to mode C
has a vertical scale twice as large as that of mode B, so that the position of the
weakest stratification due to the deformation of mode C does not match with the
antinode of mode B. Secondly, since the vertical scale of mode C is twice as large as
that of mode D, the self-enhancing mechanism due to vertical diffusion (§ 8.1) would
operate four times less effectively.

9. Conclusions
A spontaneous layer formation in unbounded diffusive stratification in a two-

component fluid has been studied numerically and analytically. In the DNS, the
spontaneous layer formation is found to occur when the density gradient ratio exceeds
a critical value above which diffusive convection grows according to the linear stability
analysis. When the stratification is supercritical, nearly steady oscillating motions, the
horizontal scale of which is of the order of the horizontal wavelength of the fastest
growing mode (FGM) in the linear stability analysis, are initiated. The disturbance
energy at this stage grows nearly exponentially in accord with the prediction of the
linear stability analysis.

After several tens of the oscillation cycle, a transition to the second stage, in
which overturning convective motions develop and well-mixed regions form, occurs.
The convective motions resemble Rayleigh–Bénard convection at a high Rayleigh
number. The well-mixed regions are then gradually organized into horizontal layers,
a typical thickness of which is of the order of the horizontal wavelength of the
FGM in the linear stability analysis. The disturbance energy at this stage exhibits an
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explosive growth. At the third stage after the layer structures are formed, the layers
repeat merging with the adjacent layers and increase their thickness with time. The
disturbance energy at this stage increases rather slowly.

A detailed analysis of the nonlinear interaction during the layer formation reveals
that four modes are responsible for the layer formation. Mode A is the FGM with
zero vertical wavenumber, and mode B is a weakly growing mode which has the same
horizontal wavenumber k0 as mode A and a finite vertical wavenumber m0. Mode C
has zero horizontal wavenumber and the same vertical wavenumber as mode B. The
mode D also has zero horizontal wavenumber but has a vertical wavenumber twice
as large as mode C. Both modes C and D are decaying modes according to the linear
stability analysis. A severely truncated spectral model with the four modes is found
to well describe the results of the DNS.

The physical mechanism for the layer formation has been proposed based on the
results of the DNS and the truncated spectral model. The explosive growth of the
disturbance energy is found to occur after the amplitudes of modes C and D attain
O(1). This is shown to be caused by the self-enhancing mechanism of the layer
structure due to vertical differential diffusion. What determines the vertical scale of
layers was also discussed.

The physical mechanisms investigated here may be important in many geophysical
situations, such as polar oceans and magma chambers, where double-diffusive
processes play important roles. As we have shown, formation of layers leads to
vigorous Rayleigh–Bénard type convection in multilayers. The convective motion and
associated transports of physical quantities are enforced as layer thickness increases
through merging. The dynamics of the layer merging is an attractive and important
topic in a variety of geophysical flows and will be treated in detail in Part 2.
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insights. T. Noguchi would also like to acknowledge the financial assistance of
cooperative research program of Ocean Research Institute, The University of Tokyo.
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